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A hybrid numerical technique is developed for the treatment of axisymmetric unsteady 
spray equations. An Eulerian mesh is employed for the parabolic gas-phase subsystem of 
equations while a Lagrangian scheme (or method of characteristics) is utilized for the droplet 
equations. The integration schemes and the scheme for interpolation between the two meshes 
are demonstrated to be second-order accurate. The approach is shown to be especially useful 
in situations where a multivaluedness of the droplet properties occurs due to the crossing of 
particle paths. A set of model equations are studied but the technique is applicable to a more 
general and more physically correct set of equations. The effects of interesting numerical 
parameters such as mesh size, number of droplet characteristics, time step, and the injection 
pulse time are determined via a parameter study. In addition to confirming quadratic 
convergence, the results indicate slightly more sensitivity to grid spacing than to the number 
of characteristics. 

Theoretical modeling of the realistic spray combustion problems generally leads to 
a large system of partial differential equation. The gas phase properties such as the 
gas enthalpy, the gas species densities, and the turbulent scales are represented by a 
subsystem of parabolic equations. An Eulerian description of the liquid phase 
properties, i.e., droplet velocity, droplet radius, droplet surface temperature, and 
droplet number density leads to a set of hyperbolic equations with some tendency 
toward a parabolic character due to turbulent dispersion of droplets. A Lagrangian 
description of liquid phase properties will, however, lead to a subsystem of ordinary 
differential equations. These two subsystems of nonlinear coupled equations are 
generally so complex that a numerical solution with a high speed computer seems to 
be the only practical method. A realistic solution for a multidimensional unsteady 
turbulent spray combustion should include: a proper modeling of gas and particle 
turbulence, a complete chemical kinetics scheme, a proper accounting of gas 
dynamics-combustion interaction, a realistic description of the initial particle sizes 
and velocities (this will mainly be determined by the injector characteristics), effects 
of droplet secondary atomization, and a precise representation of the exchange laws 
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between the phases, including the effects of transient droplet heating. A detailed 
comprehensive description of all the above phenomena may be an enormously 
expensive exercise. It may even be beyond the capabilities of present-day computers. 

An alternative approach could be to start with an idealized situation, amenable to 
a practical treatment, and then incorporate more sophisticated models. However, 
every step towards a more comprehensive model will vastly increase the number of 
computations required. For example, a more complete description of chemical 
kinetics may require a large number of reactions involving a large number of species 
and thus making the equations highly stiff. Similarly, a proper description of the heat 
and mass exchange laws between the two phases can introduce enormous 
complexities. For example, in the study of Seth et al., the conduction inside the 
droplet is the dominant mode of heat transfer. Unsteady transient heating of the 
droplets occurs with a prevaporization period preceding the period of significant 
vaporization for each droplet. During the prevaporization period the droplet is heated 
well above its initial temperature. Heating still continues after a significant 
vaporization rate begins. Even for this simple case, as many as fifteen additional 
differential equations were introduced for the case of monodispersed droplets. More 
comprehensive heat and mass exchange models, which may include the internal 
circulation, the polydisperse nature of droplets, and the multicomponent nature of 
fuel, can easily make the computation costs nonaffordable. Therefore, the need for 
improved numerical methods, through numerical experimentation, cannot be 
overemphasized. 

In the present study, the numerical experimentation is performed by considering a 
system of model equations. In selecting a model problem, it is highly desirable to 
choose one which is as simple as possible, consistent with retaining the essential 
features which affect the computational efficiency. Thus the model equations used in 
the present study retain the mathematical character of the parent equations but are 
considerably simplified otherwise. It must be understood that the intent here is to 
develop a methodology for solving spray equations and not to develop an improved 
model of spray phenomena. For that purpose, the use of model equations is very con- 
venient. 

The nonlinearity of the parent equations is retained by considering nonlinear 
source terms in the equations: These source terms express the exchange rates between 
the phases. The gas phase properties are assumed to be represented by a parabolic 
heat-diffusion type equation. Three equations are considered to represent the liquid 
phase properties, i.e., the droplet size, the droplet velocity, and the droplet number 
density. The numerical experiments on these equations indicate that for the parabolic 
equation, an efficient finite difference approach is the one based on an AD1 (alter- 
nating direction implicit) scheme involving the solution of a set of tridiagonal 
matrices. For droplet equations in Eulerian form, the existing finite difference 
techniques appear inadequate in certain situations which are important in spray 
combustion. For example, the droplet radius and liquid velocities often become 
multivalued functions, since droplet paths cross as the flow develops. This can be 
treated in a natural way be the method of characteristics, but it is very difficult to 
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handle by finite differences. Realize that the droplet or particle path and the charac- 
teristic lines for the hyperbolic equations are identical. 

Note that multivaluedness of the solutions can also occur whenever the initial 
droplet size or droplet velocity distribution is polydisperse. This type of 
multivaluedness is usually treated by considering the polydisperse spray to be the 
sum of a finite number of superimposed monodisperse sprays. The type of 
multivaluedness that is emphasized herein, however, can occur with a monodisperse 
spray. In particular, it happens whenever particle paths cross. The first type of 
multivaluedness appears first in the inflow boundary condition and therefore is 
known a priori to occur allowing it to be treated readily in the above-mentioned 
manner. The second type of multivaluedness first appears in the interior of the 
calculation domain and cannot be predicted prior to calculation. 

COVERING EQUATIONS 

The gas phase properties are governed by parabolic partial differential equations, 
whereas the droplet properties are governed by hyperbolic equations. We treat the 
latter by the method of characteristics and reduce it to ordinary differential equation. 
These two sets of equations are nonlinearly coupled because of the mass, momentum, 
and heat transfer between the phases. In the present study, the model system contains 
five equations: one parabolic equation for the gas phase scalar 8 (temperature) and 
four ordinary differential equations for four unknowns (defined before Eq. (3)), n, ,x, 
s, and gl. It may be noted that in a real system containing many gas species, the 
mass densities of various species will be given by the similar parabolic equations. The 
gas phase velocity as well as the droplet surface temperature are assumed to be 
known. Thus the momentum coupling is neglected for the gas phase; for the liquid 
phase it is properly taken into account. The set of model equations is nondimen- 
sionalized by using characteristic values of length, velocity, temperature, and droplet 
size. The characteristic values used are, respectively, 

Z, = 10 cm, UC = 100 cm/set, 

~9, = 500°K, R, = 100,~. 

The nondimensional equation for 0 in axisymmetric coordinates (r, z) can be 
written as 

ae 
-=-&e)+g+a ($+g-f) -s,, at 

where 

So= *f& (1 +Kde-a)[l +K,[W- q2 + GJl’” 

(1) 

(2) x S ‘I2 ln( 1 + K,(8 - f3,)), 
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the quantity 2atdrdz represents the volume of a computational cell in an axisym- 
metric cylindrical geometry, and the subscript 2 represents a Lagrangian variable 
associated with any computational droplet. In the above equations, Uand 0, are 
assumed to be known constants. Thus the gas velocity is assumed to be uniform and 
in the axial direction. Consequently, the radial convection term does not appear in 
Eq. (1). Here S, stands for the nondimensional heat transfer rate between the phases. 
The variable K, represents the heat transfer time constant, and K, and K, are 
assumed to be constants. It should be noted that in physically realistic two phase 
situations, K, would represent the ratio of specific heat at constant pressure and the 
latent heat of vaporization, and K, would be the coefftcient of the Reynolds number 
correction, where the Reynolds number is based on the droplet size and droplet 
velocity relative to the gas (see [ 11). The equations for n, S, U,,, and U,, are 
described next. 

LIQUID PHASE EQUATIONS 

The liquid phase properties of interest are Q1, the liquid velocity, S = R ‘, where R 
is the droplet radius, and finally Z?, which is the number density of the droplets. The 
governing equations are of the hyperbolic type, and are usually written in the 
following form 

W, ~+v”w=s’/’ K3 (II- II,), 

g+ Ij/ 6 VS = -K,(l + K4[S((U- U,,)’ + U;J”“) 

x ln( 1 + K,(6 - O,)), 

$+v. @,N)=O. 

Observe that 
n=Nu, 

(4) 

(5) 

where n is the number of droplets associated with a given mass of liquid and u is 
total volume of gas and liquid per unit mass of liquid. A standard conservation 
argument show 

-g$)+v. (q=o. 
Hence (5) reduces to 

an/at + (rJ1 * V)n = 0. (6) 
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These equations will be integrated using a Lagrangian formulation or equivalently, 
the method of characteristics. In particular, each Lagrangian variable at time 1 is 
given as P = P(X,,, t, ; t), where X,, and t, are the space and time coordinates at the 
point of injection. The position of a computational particle at time t is denoted by 
X = X(X,, t, ; t). With this convention the above equations are formally equivalent to 
the following: 

dn 0 
dt= ’ (7) 

dS 
-=-X,(1 + &[S((U- U,,)2 + U:r)]“4) 
dt 

x In( 1 + X,(0 - e,)), (9) 

dU 4 
x= SW2 - (LJ - U,). WV 

Actually, Eqs. (3~(5) are not the most general representation of the droplet 
behavior; Eqs. (7~(10) are preferred in that multivalued solutions can be treated 
systematically. These multivalued solutions are common in two phase flows since 
droplet trajectories often intersect. Note therefore that Eqs. (7~(10) are actually the 
primitive form and other restricted forms such as Eqs (3~(5) are special cases. 

BOUNDARY AND INITIAL CONDITIONS 

At the inflow (z = 0), the adiabatic boundary condition for 0 is prescribed as 

u,P,c,~, = uopocpe, - we~w,=,, 
which in the nondimensional form reduces to 

em = 6, - a(ae/az), ; 

where 8, is prescribed. 

a = VPC, U, Z, , 

An outflow boundary condition is needed to make the computational domain finite. 
We use now the standard outflow conditions at these points [2]. Mathematically, it 
takes the form 

a2e/ez2 = 0 at z=l 

At the r boundary, the boundary conditions are 

ae/ar = 0 for r=O and r= 1. 

Initially at time = 0, 0 is assumed to be the same as Bm. 
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The droplet flow is assumed to be initially conical and flowing from a point source 
at a point on the axis of symmetry where z < 0. .Initially, all the characteristics are 
positioned at z = 0. The initial values of S and n are assumed to be uniform, and U, 
is obtained from the assumption of a conical flow. 

Though the above initial conditions are highly idealized for the present study, the 
computer code has the flexibility to allow for more complicated initial conditions. 
The inflow boundary conditions in our example have been chosen to be single-valued 
(monodisperse spray) because we wish to study only multivaluedness due to the 
crossing of particle paths (or equivalently, characteristics). Such multivaluedness will 
occur in some of the cases studied. 

NUMERICAL ASPECTS AND SOLUTION PROCEDURE 

For the parabolic equation, an AD1 (alternating direction implicit) scheme is used. 
Thus a full time advancement takes place in two steps. First, time is advanced by a 
half step in the z-orientation and then it is advanced by another half step in the r- 
orientation. The difference equations are 

in the z-orientation 

8 n+1/2 - en 
At/2 

and then the r-orientation 

which is second-order accurate in Ar, AZ, and At. Because Sit’ is nonlinear, it needs 
to be evaluated either by an iterative or quasilinearization procedure. One crude 
approximation is to take Sz” to be the same as S”,. Then the results are less than 
second-order accurate in time. To obtain second-order accuracy in time, an iterative 
scheme is used, where S”, is used as the initial approximation and is updated until the 
desired accuracy is obtained. In another method involving quasilinearized procedure, 
S”,” is written as 

S “e+ l= s; + (as/ae)yent’ - en). 
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In the first approximation rY’+ ’ is assumed to be the same as 8”. Due to coupling 
from liquid phase equations, it is updated by iteration until desired accuracy is 
achieved. 

The ordinary differential equations (7~(10) are integrated over the same time step 
by a standard second-order predictor-corrector scheme [5]. The local values of 
temperature for Eq. (9) at each point on the trajectory are obtained from linear inter- 
polation of the four surrounding values of the gas-phase solution in the computation 
cell through which the droplet is passing. 

The energy interchanges occurring as the droplets traverse each grid cell are 
evaluated by superimposing to the four surrounding grid points as shown in Fig. 1. 
Therefore 

ans S,(Z + l,.Z), S,(Z + l,J+ l), and S,(Z,.Z + 1) are readily determined in 
analogous fashion. 

Due to the linear interpolation, this maintains the second-order accuracy in our 
finite difference scheme, as opposed to the first-order accuracy that would result by 
assuming that the coefficients are constant in each cell [3,4]. 

J MESH LINE 

I MESH LINE 

FIGURE 1 

581/50/l-8 
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In the iteration cycle, the solutions for the liquid properties are first advanced one full 
time step via Lagrangian calculations and then the 8 solution is advanced two half 
time steps in the ADI subcycle. 

NUMERICAL RESULTS 

In this section we discuss the results from selected numerical experiments, as well 
as the specific integration schemes used in these simulations. As noted above, two 
ways were considered for treating the nonlinearity S, in the 9 equation, namely, 
iteration with respect to the source term S, and quasilinearization. The former has the 
advantage that the distribution scheme discussed above for the source term S, is 
physically clear. We found, however, that the number of iterations grew very rapidly 
with At, and the time step restrictions were far more severe than those required for 
reasonable engineering accuracy. The distribution scheme used in quasilinearization 
distributed S, and %,/a0 in exactly the same way S, was distributed in the iterative 
scheme. From a physical point of view this is somewhat ad hoc; however, in those 
cases where the iteration converged, the difference in the answers between the two 
approximations occurred in the fourth or tifts decimal place. Moreover, the CPU time 
required for the interative scheme was considerably higher than that required for the 
quasilinearization. Thus all of the results presented below used the latter scheme. 

The computer code developed for these simulations can use a variety of schemes 
for integrating the ordinary differential equations (7~(10) arising from the 
Lagrangian approach. To maintain a second-order approximation in our scheme, a 
preditor-corrector second order Runge-Kutta method was used to integrate (7)-( 10). 

Three grids were used in the calculations. The parameters varied were the number 
of characteristics N, the time step At, the grid spacings Ar and AZ, and finally the 
injection pulse time r,,. (The physically continuous injection process is represented in 
discretized fashion by considering injection pulses with a period 5,). Data for the 
individual grids is listed below: 

coarse grid: N= 3, At = 0.02, Ar=Az=O.l, rp = 0.04 

base grid: N= 6, At = 0.01, Ar = AZ = 0.05, rp = 0.02 

finite grid: N = 24, At = 0.005, Ar = Az = 0.025, t,, = 0.01 

To get a rough idea of the order of accuracy of our approximations to the 
temperature field 6, we measured the discrete L, error at steady state, assuming that 
the tine grid approximation was exact. More precisely, letting Bi denote the value of 
approximate temperature at the ith grid point (as computed on the coarse or based 
grid), and letting $ denote the analogous value for the fine grid, we then defined 

(i 
I/2 

E= ~j0i-@12AzAr 
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as the measure of error, where the sum is over all grid points. On the coarse grid this 
error was 3.6 x lo-* while on the base grid it was 4 x 10w3. This demonstrates a 
quadratic convergence in our scheme in the sense that E is reduced by at least a 
factor of four (in this case it is nine) when the grid is cut in half. 

We selected the results obtained from the base grid to illustrate various features of 
the flow. The results of that calculation are portrayed in Figs. 2-5 for gas 
temperature, droplet trajectories, and droplet size. The phenomenon modeled is 
unsteady but reaches a steady state after an initial transient period. At t = 0.5 (50 
time steps), for example, the solution is in the midst of the transient while by t = 3 
(300 time steps), a steady state has been well established. Figure 2 displays the gas 
temperature 8 during the transient period (t = 0.5). Note that the gas temperature 
initially (at t = 0) was equal to 2.0; the effect of the vaporizing droplets is to cool the 
gas since energy is required for vaporization. The neighborhood of the origin is where 
injection occurs (see Figs. 4 and 5), droplet number is greatest, and the cooling effect 
is greatest. On account of large gradients in space and time in this neighborhood, 
sensitivity to mesh size and time step are most severe in this region. The gas 
temperature in this neighborhood decreases with time, so that the cooling effect 
becomes less severe as time proceeds. There seems to be potential for benefit from 
nonuniform grid and variable time step, but this possibility has not yet been explored. 

Figure 3 demonstrates the steady-state (t = 3) gas temperature profile. The coldest 
region is along the axis of symmetry which is essentially the center of the spray cone. 
Again, even in the steady state, the largest gradients occur in the neighborhood of the 
origin. 

.6 
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CONTOUR VALUE 
1 0. fm259 
2 0.790955 
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4 1.c92348 
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8 1.695133 
9 1.845630 
10 I. 996526 

FIG. 2. Temperature contours (base case; time = 0.5). 
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4 1.073266 
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2 
FIG. 3. Temperature contours (base case; time = 3.0, steady state). 

Figures 4 and 5 show steady-state results for droplet size and droplet trajectories. 
Note that in Fig. 4, the circle radii represent droplet volume S”’ and not droplet 
radius S”*. Since a computer plots those circles with some degree of discretization of 
diameters, only the roughest inferences should be made from such graphs. The 
droplet size is definitely seen to decrease substantially as it moves through the hot 
gas. Of course, the droplets at the edge of the spray vaporize much more rapidly than 
the droplets in the spray center. The gas velocity is greater than the axial component 
of the initial droplet velocity so that drag causes the droplets to accelerate 

R 

’ I I , I I I 
0 .2 .4 .6 .I3 1.0 

Z 

FIG. 4. Droplet volume (base case; time = 3.0). 
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FIG. 5. Droplet velocity vector (base case; time = 3.0). 

downstream. The trajectories are clearly seen to involve a turning of the droplets in 
that direction. 

Note that the cell Reynolds number varied between 1.35 and 5.0 for all cases 
considered and, in particular, was 2.5 for the 20 x 20 mesh base case. 

The next set of results is given in Figs. 6 and 7, and display the sensitivity of the 
approximation to changes in the number N of characteristics used and to the grid 
spacing AZ and Ar. In these figures comparisons are made with the results obtained 
from the base grid by varying one or more of these parameters, Figure 6 deals with 

CONTOUR VALUE 
1 -0.022249 
2 -0.015331 
3 -0. ma413 
4 -0.m1495 
5 o.msdn 
6 0.012341 
i 0.026117 0.019259 

9 0.033c95 
10 0. Mm13 

FIG. 6. Temperature difference contours (normalized change, three characteristics versus six charac- 
teristics; time = 3.0). 
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CONTOUR VALUE 
1 -0.061226 
2 -0.050234 
3 -0.LU9212 
4 -0.028251 
5 -0.017259 
6 -0. Lw268 
7 O.oM724 

9” 
O.OE.716 
0.026707 

10 0.037699 

.8 1.0 
Z 

FIG. 7. Temperature difference contours (normalized change, 10 x 10 grid versus 20 x 20 grid; 
time = 3.0). 

the case where the number of characteristics on the base grid has been changed from 
N = 6 to N = 3. Plotted are contours of constant values of 

(@6) - ,9’3’)/@6’, 

where 0(‘) is the temperature field obtained from the base grid, and 0(‘) is the 
temperature field obtained from the base grid except where N has been reduced to 3. 

Figure 7 has analogous contours except where the mesh spacing in the base grid 
has been changed from dr = AZ = 0.05 to Ar = AZ = 0.1. These figures tend to 
indicate that the two-phase flow is satisfactorily resolved on the base grid, and in fact 
for most purposes, even the coarse grid may be satisfactory. They also show that the 
approximation is slightly more sensitive to the grid spacing than to the number of 
characteristics used. 

Changes in the time step produce more delicate effects. First of all, the nature of 
the initial condition used places definite restrictions one the size of At, at least for 
small times t. The reason for this is that the sharp gradients produced near t = 0 may 
cause the calculated temperature to go negetive if At is too large. At this point, the 
calculations must be terminated due to the nature of the source terms. This, for 
example, was the case when At was increased in base grid from 0.02 to 0.05. It is to 
be emphasized that this restriction is far less severe than the restriction on At found in 
the iterative scheme. 

Similar considerations show that the ratio r,/dt must be sufficiently small. For 
example, if in the base grid (where At = 0.01, rp = 0.02) the pulse time rp were 
increased to 0.05, then negative temperatures would occur. 
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Probably the most important feature of the Lagrangian formulation is 
demonstrated in Figs. 8 and 9. In this axisymmetric case, injection is considered to 
occur from a circular line source at z = 0. This may be viewed as the limit of a ring 
of injection orifices whereby both distances between orifices and orifices diameter go 
to zero. In this case, many intersections of droplet trajectories will occur (see Fig. 8) 
so that solutions for all droplet properties are multivalued. Note that the gas 
temperature, as shown in Fig. 9, is still single-valued. Any finite difference scheme 
based upon a continuum formulation employing Eqs. (3)-(5) could not represent this 
type of phenomenon. The crossing of the characteristic would not be allowed by a 
finite-difference scheme. Numerical diffusion would “merge” and “smear” the charac- 
teristics. In the case of a compressive wave in a gasdynamic field, such merging could 
give respectable global representation to shockwave formulation; however, in the 
present droplet study, such a result would be nonsensical. Again, with typical number 
densities, a negligibly small fraction of intersecting droplets will actually collide. 

Finally, a comparison was made between the second-order distribution scheme 
discussed in this paper with the first-order scheme proposed by Gosman and 
Johns [3] and Dukowicz [4]. To do this, we retained all features of our discretization 
(ADI, method of characteristics, etc.) except for the replacement of the second-order 
distribution scheme bith the first-order version. It is emphasized therefore that our 
comparison is with their proposed interpolation scheme to our model equations. It is 
not a comparison between their calculations and our calculations since different 
equations were employed. The latter had L, errors (using the line grid as exact) 
3.6 X lo-* and 1 x lo-’ for coarse grid and base grid, respectively. This 
convergence is superlinear due to the fact that everything but the source term S, is 
treated with second-order accuracy, and that the coupling through S, is rather weak 
in this particular model. However, this convergence is definitely subquadratic, and 
theoretically should actually become linear as the grid spacings approach zero due to 
the first order treatment of S,. Further, it is worth mentioning that Crowe et al. ] 7) 

FIG. 8. Droplet velocity vector (circular line source case; time = 3.5, steady state). 
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6 1.359426 
7 1.506721 
8 1.654017 
9 1.801312 
10 1.948607 

Z 

FIG. 9. Temperature contours (circular line source case; time = 3.5). 

have used a source distribution scheme which is similar to that of Gosman and 
Johns [3] to solve steady-state spray equations. Since they are solving the steady- 
state two-dimensional planar equations as compared to the time-dependent axisym- 
metric equation used here, the present results cannot be compared with those of [ 71. 

CONCLUSIONS 

A system of model equations which retain the essential mathematical and 
numerical character of the parent equations for treating a typical two phase spray 
flow is employed. Through numerical experimentation on these equations, it is recom- 
mended that an Eulerian representation for the gas phase properties and a Lagrangian 
representation for the liquid phase properties be used with any spray model. See, for 
example, the model by Aggarwal et al. 161. Indeed, for certain flow situations 
involving multivalued droplet properties, this seems to be the only appropriate 
approach. Following this approach, an efficient numerical algorithm is developed 
which is consistently second-order accurate. In this algorithm, the unsteady axisym- 
metric gas phase equations are solved by using a second-order accurate implicit AD1 
scheme, whereas the Lagrangian equations are solved by a second-order 
Runge-Kutta scheme. The treatment of exchange laws between the phases is also 
made second-order accurate by using two-dimensional linear interpolation and 
volume-weighted distribution. The results of two different numerical experiments are 
presented. In the first experiment, the sensitivity of those results to the changes in 
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time step, droplet pulse time, grid size, and number of groups of droplet charac- 
teristics used to describe the droplet injector is examined. All these results confirm a 
quadratic convergence as the grid size or the time step is varied. It may also be 
indicated that the results are slightly more sensitive with respect to the grid spacing 
than the number of characteristics. 

The purpose of the second experiment was to demonstrate a physical situation 
which has multivalued droplet properties. For this case, a finite-difference solution of 
droplet equations based on an Eulerian description is inadequate. On the other hand, 
the Lagrangian description becomes a natural method for this type of flow. In 
addition, a comparison has been made between the interpolation scheme presented in 
this paper and the interpolation scheme proposed by Gosman and John [3] and 
Dukowicz [4]. With the latter scheme, which gives superlinear (but subquadratic) 
convergence, results are slightly inferior to those presented in this paper. Future 
computations of more realistic flows with relatively stronger two phase coupling 
might reveal more prominent differences between first- and second-order source 
function distribution. 
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